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Abstract 

We study Type I string theory compactified on a T6/Zs orientifold. The low-energy dynamics 
is most conveniently analyzed in terms of DS-branes. We show that a sector of the theory, 
which corresponds to placing an odd number of DS-branes at orientifold fixed points, can give 
rise to an SU(5) gauge theory with three generations of chiral matter fields. The resulting 
model is not fully realistic, but the relative ease with which an adequate gauge group and 
matter content can be obtained is promising. The model is also of interest from the point of 
view of supersymmetry breaking. We show that, for fixed values of the closed string modes, 
the model breaks supersymmetry due to a conflict between a non-perturbatively generated 

superpotential and an anomalous U( 1) D-term potential. 
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1. Introduction and Summary 

The past few years have seen remarkable progress in our understanding of the non- 
perturbative behavior of string theory [l]. D-b ranes have played a vital role in these devel- 
opments [2]. Th e consequences of this theoretical insight in string phenomenology are just 
beginning to be explored. In this paper we attempt to take a few preliminary steps in this 
direction. For related recent work see [3]-[8]. Perhaps th e simplest idea to explore is that 
we live on a three dimensional brane or somewhat more precisely, that the 3 + 1 dimensional 
spacetime corresponds to the world volume of a set of D3 branes. This immediately gives rise 
to a question: can a (grand unified) theory accommodating the standard model interactions 
and matter content be obtained in this manner? 

D-brane model building is of interest from another point of view as well. Most of the 
model building so far has been carried out in the Es x Es heterotic string [9]. In this 
context, there is a well known problem in reconciling, within the context of weakly coupled 
string theory, the “observed” unification of gauge coupling constants in supersymmetric 
extensions of the standard model [lo] and the value of Newton’s constant. Witten [3] has 
recently suggested working with the strongly coupled heterotic theory to avoid this problem. 
Another possibility, also mentioned in [3], is to consider model building in the Type I theory. 

We begin this paper by considering, in Section 2, the question of gauge and gravity uni- 
fication in the Type I string theory. We show that both the gauge coupling unification and 
the value of the Newton constant can be obtained within the context of Type I perturbation 
theory. Moreover, the analysis indicates that in several cases the more appropriate descrip- 
tion is a T-dual one with D3 branes. This provides additional motivation to enquire about 

the standard model arising from D3 branes. 
In Section 3, we turn to this issue by considering a compactification of the Type I theory 

on a T6/Zs orientifold. This compactification has been considered earlier by [ll]. We point 
out that, in addition to the sector considered in [ll], the moduli space for this compactifi- 
cation has additional disconnected branches, similar to the ones found in [12]. The different 
branches correspond to distinct ways in which the branes can be placed at the various ori- 
entifold fixed points. The additional branches of moduli space exhibit patterns of gauge 
symmetry breaking that are not otherwise allowed. In particular, we show in Section 3.1, 
that an SU(5) g rand unified theory with three generations of matter fields in the 10 and 5 
representations can arise in this manner. In Section 3.2, we show that some nonperturbative 
consistency conditions [13], [12] leading to the existence of these additional branches are met. 
The model obtained in this manner is not fully realistic: there are no Higgs fields present 
and there are Yukawa couplings violating baryon and lepton number. Even so, we view the 

relative ease with which an adequate gauge group and matter content can be obtained as 
encouraging. 
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Finally, in Section 4, we turn to another aspect of the SU(5) theory mentioned above. The 
theory has an additional U(1) gauge symmetry, which is anomalous. We show that a conflict 
between the non-perturbatively generated superpotential and the D-term of the anomalous 
U(1) gives rise to supersymmetry breaking in this theory. Classically, the D-branes giving 
rise to the gauge theory are stuck at the orientifold plane. In the supersymmetry breaking 
vacuum, some of these branes are repelled by the orientifold and come to rest away from it. In 
this discussion of supersymmetry breaking, we neglect the gravitational interactions and keep 
the dilaton and a relevant orientifold blow-up mode fixed. We show that supersymmetry 
breaking occurs for any fixed values of the dilaton and orientifold blow-up mode. Once 
these modes are taken to be dynamical, there are, as usual, runaway directions along which 
supersymmetry is restored. What happens when the relaxation of the closed string modes 

and the gravitational interactions is included is an interesting question which we leave for 
the future. 

2. Gauge Coupling Unification on D3 Branes 

In this section, we discuss the constraints imposed on string model building by the require- 

ment of gauge coupling unification (taking the values (XGUT and ~MGUT for supersymmetric 
extensions of the standard model) and the observed value of Newton’s constant. For the 
Es x Es heterotic string, these requirements lead to the conclusion that string theory must 
be strongly coupled [3]. I n contrast, as has been noted earlier in [3], we will see that in 
the case of the Type I string theory these requirements can be met while still working at 
weak string coupling. Moreover, the discussion below suggests that in several Type I models 
the six compactified dimensions can have a length somewhat bigger than the inverse GUT 
scale. In these cases, the gauge group and charged matter would arise from fields living on 
DS-branes that fill the 3 + 1 dimensional flat spacetime. 

The relation between the string scale o’, Type I string coupling gz, volume of compacti- 
fication vs, gauge coupling at unification L~GUT = g2/47r, and Newton’s constant GN is given 

bY PI: 
GN = g $ g; , (2.1) 

and 
(2747 aI3 

aGUT = 7 v,gZ. (2.2) 

Here we will consider the situation where the six compactified dimensions have approximately 

the same size R. The volume vs is then roughly given by 

vs = (27rfi)6 (24 

To proceed, we need to decide how to relate the unification scale MGUT N lOi GeV to LY’ 
and R. In several string models the gauge couplings unify even in the absence of a grand 
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unified group. In these cases, one expects the grand unification scale to correspond to the 
masses of the lightest extra charged states present in the string theory. These extra states 

can be of two kinds: Kaluza-Klein modes with a mass of order l/R, or higher string modes 
with a mass of order l/a. If we assume that R > &?, the lightest extra states have a 
mass m - l/R, leading to the relation R - ~/MGuT. From eqs. (2.1), (2.2), and (2.3) it 

then follows that: 
a’ 
@= QGUT R MP~, (24 

and 
gz = 41/2 

1 
a&T R3 M;,' P-5) 

With the values QGUT = 0.04 and R N ~/MGUT = (1016GeV)-1 for the supersymmetric 
standard model [lo], and Mpl = GG1’2 = 1.2 x 101’ GeV, we get from eq. (2.5) that : 

!n N 1o-6 . (24 

Thus, the gauge coupling is small, as mentioned above. However from eq. (2.4) we find that: 

This shows that our starting assumption (R > @) about the lightest extra charged states 
coming from Kaluza-Klein modes is incorrect. A consistent solution is obtained by assuming 
that R < &?. The lightest extra states which enter at the GUT scale are then higher string 
modes with mass M N l/a. In th is case, the more appropriate geometrical picture is 

obtained by T-dualizing along the six compactified directions. Doing so turns the D9 branes 
into D3 branes. The T-dual radius and string coupling are given by: 

and 

(2.8) 

(2.9) 
Eq. (2.2) then implies directly that 

Gz = 2 CXGUT N 0.08 . (2.10) 

Furthermore, since the lightest excitations are higher string modes we now set QI’ - ( MGUT)-~. 

Eq. (2.1) then gives 

fi=fi ;M;, 
( 

(11’ tj; )” N 3&f,-;, . (2.11) 

It is useful to describe the resulting picture in words. The gauge group and charged 
matter arises from DS-branes. The six compactified dimensions have a length scale somewhat 
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bigger than the inverse GUT scale. In particular, we note that since all the degrees of freedom 
charged under the gauge groups arise from open strings that end on the t hree-branes, there 
are no momentum modes with mass of order l/A charged under the gauge group. Instead, 
there are winding modes with a mass of order @CY’ but these are somewhat heavier than 
the higher string modes with mass N l/e. 

We should emphasize that the above picture is meant to be suggestive. Whether it applies 
or not will depend on the details of the compactification. It was noted in [3] that in the 

Es x Es theory the large gauge coupling implies an extra dimension at a scale somewhat 
below the GUT scale (for recent work and a list of references, see [4]). Here it is interesting 
to note that the presence of extra large dimensions might be true in the Type I case as well, 

and more generally, in attempts to build string models involving branes. We should also note 
that the conclusion with regards to the smallness of the string coupling is secure regardless 
of the exact relation between R and @.2 

We end this section with a few comments. First, strictly speaking, the discussion above 
applies to models where gauge coupling unification occurs in the absence of a grand unified 
group. One can ask what happens if the low-energy field theory is a grand unified theory. 
In this case the lightest extra string states need not occur at the GUT scale but could have 
larger masses. Eq. (2.1) th en shows that in these cases the compactification scale !? should 
be comparable to CX’. Even so, as we see in the next section it might be sometimes convenient 
to analyze such a model in terms of DS-branes. Second, in our analysis we have taken all 
the compact dimensions to have roughly the same size. This of course need not be true. 
For recent discussions of large extra dimensions and weak scale strings see [5]. Finally, we 
have assumed that the gauge group and matter content arises from the perturbative sector 
of Type I theory. This, too, need not be true. One could have a situation where some of the 
degrees of freedom arise from 9-branes while others arise from 5-branes; for model building 
along these lines see [7], [8], [14]. 

3. A Three Generation Model on D3 Branes 

In this section, we present a simple “three generation” model with D3 branes placed 

at a T6/Zs orientifold. The model is, admittedly, not a realistic one, but it will serve the 
purpose of making several generic points quite explicit. In general, the moduli space of 

the gauge theory which governs the low-energy dynamics can be quite complicated with 
several disconnected sectors. The DS-brane picture allows for a geometric description of 
these different branches of moduli space [12]. The different branches correspond to the 
distinct ways in which the branes can be placed at the various orientifold fixed points. 

The additional branches of moduli space can have multiple uses. We will see below that 

2For example, setting a= R in eq. (2.2) still gives (2.10) for the gauge coupling. 
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they exhibit interesting patterns of gauge symmetry breaking that are not otherwise possi- 
ble. In addition, branes placed at different orbifold fixed points can serve as “visible” and 

“hidden” sectors; the latter can be responsible for supersymmetry breaking. The lightest 
excitations of strings stretching between branes at different fixed points transform as funda- 
mentals under both the “hidden” and “visible” gauge groups; these could be instrumental 
in communicating supersymmetry breaking. 

3.1 The T6/~3 orientifold 

We now turn to studying the Type I theory compactified on a T6/Z3 orientifold. This 

theory has been analyzed by [ll] and more recently by [14], where the low energy dynamics 
was shown to correspond to an SU(12) x SO(8) gauge theory. Our main purpose here will 
be to study some sectors of moduli space which are disconnected from the SU(12) x SO(8) 

theory mentioned above. For this purpose it will be often convenient to T-dualize the 
Type I theory along the six directions of T 6. Doing so turns the 9-branes into 3-branes. The 
disconnected sectors then correspond to placing an odd number of 3-branes at the orientifold 
fixed planes and can be easily visualized. We show below how an SU(5) theory with three 
generations of matter fields in the 10 and 5 representations can be obtained in this manner. 

Let us describe the T6/Zs orientifold in more detail. We work for the most part in the 
T-dual description involving D3 branes. The D3 branes stretch along X1f2y3. We introduce 
complex coordinates, zr = X4 + iX5, 22 = X6 + iX7, 2s = X8 + ix’, in the compactified 
six-dimensional space. Consider the two-torus obtained by identifying points under 

The T6 is obtained by taking three copies of this two torus, corresponding to the three 
complex coordinates ~1 , 22,~s. The orientifold group is given by: 

G = { 1, o, 02, s2R(-1)F”, 0R(-l)%, 0R(-1)FLa2 } . (3.2) 

Here, Q is a spacetime symmetry whose action is given by: 

(a, 22, 23) + (QZl, az2, az3) * (3.3) 

R denotes world-sheet orientation reversal, and R is a reflection zi + -zi, i = 1,2,3. FL is 
an operator that flips the sign of the left-moving Ramond states. The orientifold group G 
has a Zs subgroup 

G z2 = (1, OR(-l)FL} (3.4) 

and a Zs subgroup 
G 23 = {1,Q,Cr2}. P-5) 
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These will play a useful role in the subsequent discussion. 
In addition to acting on the spacetime indices, the orientifold group acts on the Chan- 

Paton indices of the open string states stretching between D3 branes [a]. The action of the 
group elements, RR( -l)F~ and o, on the Chan-Paton factors X is: 

x + %2R(-1)FL XT y&-1)FL 7 (3.6) 

and 

x + “IQ x y,l. (3.7) 

The matrices yU and T~~(-~)Q must furnish a representation of the orientifold group. The 

matrices yaR(-l)FL, representing the action of the Zs part of the orientifold group should 
obey [a]: 

c ) T 

%m(-1)FL = %m(-1)FL * (3.8) 
In the absence of the Zs orbifold projection, the OR(-l)FL projection would lead to an SO 
gauge group on the D3 brane world volume. 

Tadpole cancellation conditions play an important role in ensuring the consistency of 
the string compactification. For the T6/Zs orientifold these were discussed in [ll]. For the 
sake of brevity we will not discuss a detailed derivation of these conditions here. Instead we 
will content ourselves with stating them; as the reader will see these conditions give rise to 
anomaly free gauge theories. 

As expected, the untwisted Ramond-Ramond 4-form charge conservation conditions re- 
quire the presence of 32 D3 branes to cancel the orientifold charge. In addition, there are 
charge cancellation conditions for the twisted RR fields. Before stating these, it is useful 
to consider the action of the G,, and G,, subgroups of the orientifold group on the T6. 
Consider first a two torus shown in Fig. 1. 

i2Pi/3 

Figure 1 
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The origin, denoted by the triangle in Fig. 1, is the only fixed point with respect to the 
full Zs orientifold group. In addition the G,, subgroup has two additional fixed points, at 

2= le? and 2 = ’ 
4 3 e?, respectively. These two fixed points are interchanged under the 

action of the GZz subgroup and are denoted by circles in Fig. 1. Similarly, the G,, subgroup 
has three additional fixed points at z = i, ie%, fe?, which are denoted by squares. These 
are images of each other under the G,, symmetry. The fixed points for the T6 can now 
be deduced in a straightforward manner. There is only one fixed point under the full ZB 
symmetry-the origin. In addition, as in the T2 case there are fixed points of the G,, 
symmetry which are transformed into one another by the G,, and vice-versa; these will be 
referred to, in what follows, as G,, and G,, fixed points, respectively. 

We can now return to the tadpole conditions for the twisted Ramond-Ramond fields. If 
ya is the matrix which represents the action of G,, on the branes at the origin, one finds 
[ll] that: 

Tr y0 = - 4 . w 

In contrast, at a G,, fixed point one finds that 

Tr “/cy = 0. (3.10) 

Finally, at each G,, fixed point (and consistently at its i& image points) one can choose to 

place an even or odd number of branes. 
The simplest way to meet these conditions is to place all the 32 D3 branes at the origin. 

This gives rise, from eq. (3.9), to a gauge theory with SU(12) x SO(8) gauge group with 
three generations of (a, q  ) + (1, 1) fields which was discussed in [ll]. 

The rank of the SU(12) x SO(8) g au e s g y mmetry can be reduced by moving some of 
the branes away from the origin in a continuous manner. To be consistent with the i& 
orientifold symmetry, however, these branes can only be moved away from the origin in sets 
of six. From eq. (3.9) it then follows that the rank of the SU(N) factor must always be odd; 
this precludes an SU(5) gauge symmetry which is attractive from a phenomenological point 
of view. 

3.2 The SU(5) theory 

We turn now to exploring some branches of moduli space, which are disconnected from 
the SU(12) x SO(8) th eor y mentioned above. We will see how some of these branches give 
rise to an SU(5) gauge theory with three generations of fields in the 10 and 6 representations. 
We discuss examples of such disconnected branches below, but before doing so it is worth 
summarizing the essential features responsible for the grand unified theory. 

In some sectors of moduli space, an odd number of branes can be removed from the 
origin. In particular, a situation can arise where only 11 of the 32 D3 branes are left at 
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the origin. Eq. (3.9) th en implies that one has an SU(5) gauge symmetry. In addition 
there is an anomalous U(1) symmetry (which is broken at the string scale). The theory has 
N = 1 supersymmetry with matter content corresponding to three generations of matter 
fields which transform as: 

(3.11) 

The theory has a renormalizable tree-level superpotential given by 

W tree = 15 “jkAiQjQk. (3.12) 

The three generations arise because the Zs action in eq. (3.3) does not distinguish between 
the three (complex) transverse coordinates, thus one set of matter fields in eq. (3.11) arise 
from each of them. 

We now turn to discussing how these disconnected branches arise. As we saw in the 
discussion above, if we start with all 32 branes at the origin and move some away in a 
continuous manner, one is always left with an even number of branes at the origin. Thus 
to get 11 branes some of them must be placed at fixed points of the G,, of G,, subgroups, 
eqs. (3.4), (3.5). N ow eq. (3.10) implies that the number of branes at a G,, fixed point must 
be a multiple of three. In addition, as we saw above, each G,, fixed point has a G,, image. 
Thus, one finds that all the branes at a G,, fixed point can be moved continuously away in 
a & symmetric manner back to the origin. Disconnected branches of moduli space can be 
obtained, however, by placing an odd number of branes at a G,, fixed point (and its two 
images under GBa). Since there are a large number of G,, fixed points in T6 this gives rise 
to a large number of possibilities. We will not analyze all of them in detail here. Rather, 
as an illustrative example, we focus on a case that gives rise to the SU(5) “grand unified 
theory” mentioned above. 

For this purpose, the simplest possibility is to consider a situation where all the branes 
are at the origin as far as the third T2 (corresponding to the 2s coordinate) is concerned, but 
not as far as the other two tori are concerned. Consider placing one D3 brane at a G,, fixed 
point in the first T2 and at a G,, fixed point in the second T2-this brane has two images 
under the Zs symmetry. Next, place one D3 brane at the origin of the first two-torus, but 
at a G,, fixed point of the second T2-this brane has two images as well. Finally, place a 
D3 brane at a G,, fixed point of the first torus, but at the origin of the second. This brane 
has two images as well. Altogether, counting images, this gives us 9 D3 branes-an odd 
number-which are stuck to orientifold planes away from the origin (note, however, that the 
number of D3 branes at the G,, fixed points in each of the three two-tori is even; this is 
required by the consistency conditions discussed in the following section). The remaining 
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23 branes at the origin give rise to an SU(9) x SO(5) g au e s g y mmetry. The matter fields 
transform as three generations of (1, 1) and (a,~), under the SU(9) x SO(5) gauge group.3 

Finally, one can move 12-two sets of six-of the remaining branes away from the origin, 
leaving behind 11 branes, obtaining thus the SU(5) theory mentioned above, eq. (3.11). We 
also should mention that for a generic position of these 12 branes, the full gauge symmetry 
includes an additional U(1) x U(1) f ac t or. This “hidden sector” gauge group can be further 
enhanced if the branes are placed at G,, fixed points or at the G,, orientifold planes. For 
example, placing six of the 12 branes at a Gz, fixed point (and the remaining six at the image 
point) gives rise to an N = 1 theory with SU(2)3 y s mmetry and three sets of chiral matter 
transforming as bifundamentals under pairs of the SU(2) ‘s. Dividing the 12 branes between 
a G,, orientifold plane and its two images, on the other hand, can give rise to a theory with 
N = 4 supersymmetry and an SO(4) or SO(5) gauge symmetry (the SO(5) symmetry can 
arise if the orientifold planes chosen already contain a D3 brane stuck to them, as mentioned 
above in the discussion of the disconnected moduli space). 

So far, we have ignored the effects of open strings stretched between branes at different 
fixed points. The lightest excitations of such strings are massive states which transform 
as fundamental-antifundamental under the respective world volume gauge groups. In the 
example we gave above, there can be two world volume theories with N = 1 supersymmetry. 
If supersymmetry were dynamically broken in one of these theories, supersymmetry breaking 
would be communicated to the other gauge theory via the massive chiral multiplets just 
described (and, of course, by the supergravity in the bulk). A more precise investigation 
of this would probably involve details of the supersymmetry breaking dynamics and the 
stabilization of the dilaton [15]; we leave this for future investigation. 

3.3 Non-perturbative consistency conditions 

There is one subtlety concerning disconnected sectors of moduli space that needs to be 
mentioned. Sometimes such sectors are not allowed, even when they pass all the perturbative 
consistency conditions, due to non-perturbative reasons. Similar issues were addressed in 

P31, 1121. w e will not be able to discuss this matter in full detail here, but will mention 
some salient points. The basic idea behind the non-perturbative consistency conditions is 

as follows. The Type I theory does not have any perturbative states which transform in 
spinor representations of SO(32). H owever, such states are present in the dual heterotic 
SO( 32) theory and are nonperturbative in the Ty$e I theory. Allowing for such spinor 
representations imposes additional consistency conditions-whose origin from the Type I 
viewpoint is non-perturbative. 

We can verify that the example discussed above, giving rise to the SU(5) model, meets 

3 We are using a notation where the vector of SO(N) is denoted by 0. 
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various non-perturbative conditions. However, we should caution the reader that there might 
be other conditions, besides the ones we have checked that might not be mete4 It is in fact 

useful to carry out this discussion in the original description of Type-I theory in terms 
of 9 branes. The essential feature giving rise to the disconnected branch of moduli space 
in the example above was the fact that there were 9 D3 branes (counting images) which 
were “stuck” at the orientifold plane. In the T-dual 9-brane language we are using now, 
the positions of branes correspond to expectation values for particular Wilson lines. The 
question is whether the Wilson lines’ expectation values are consistent with the existence 
of states that transform as SO(32) p s inors-the holonomies around any contractable loop 
should be trivial in the appropriate spinor representation. 

The example discussed in Section 3.2 is equivalent to turning on four Wilson lines along 
the noncontractible loops of two of the two-tori. It turns out in this case that the holonomy 
around any contractible path is trivial in all representations of SO(32). One can show this 
by explicitly writing down the Wilson lines that correspond to the brane configuration with 
9 D3 branes removed from the origin, which was described in Section 3.2. Moreover, in this 
example, an explicit periodic flat connection, which is not constant on the zr ,z2 four-torus, 
can be found. This can be done by a straightforward generalization of the construction of 
ref. [16] to the case of T 4. Furthermore, as in [13], one can show that if W is the Wilson line 
relevant for the particular Za fixed point then (WY~)~ = 1 in spinor representations as well. 

Before moving on, let us mention that the example of Section 3.1, giving rise to 11 branes 
at the origin, is just one of several possibilities consistent with the various conditions. For 
example, one can easily work out brane configurations with an odd total number of branes 
removed from the origin that involve moving branes to the GZz fixed points in all three 

two-tori. 

3.4 The GUT: shortcomings 

It is useful to describe the construction of the SU(5) theory in group theoretic terms 
perhaps more familiar to some model builders. The SO(32) gauge symmetry is broken to 
an SO( 11) subgroup (t imes a hidden sector group). The orientifold projection then further 
breaks the symmetry to SU(5) (with an additional anomalous U(1)). The 5 and 10 matter 
fields arise from the adjoint representation of SO(l1) by the orientifold projection. The 
three generations arise because there are three complex (six real) transverse dimensions and 
because the orientifold group acts in an identical manner on the three directions. 

The relative ease with which a realistic gauge group and matter content can be obtained 
in the Type I theory is interesting. We should note, that even though we used a D3 brane 

4By way of camp arison, we note that the conditions we have tested are the analogue of those discussed 
in Section 2.3 of [13]. The authors also formulated a stronger set of conditions in Section 5 of ref. [13]. We 
have not investigated the presence of such stronger consistency conditions in the present case. 
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description to simplify the discussion, the construction as such was purely in the context 
of perturbative Type I string theory. In particular, the matter content was obtained, even 
though we did not have any spinor representations of SO(32) to begin with-in fact all the 
matter fields can be thought of as being obtained by truncating adjoint representations of 
SO(32). 

However, it should also be noted that the model is meant as an illustrative example and 
is not realistic. There are several reasons for this. First, there are no Higgs fields either 

t,a break the SU(5) g au e s g y mmetry or to give rise to the SU(2) Higgs doublets of the 

supersymmetric standard model. Second, and this is perhaps a more important limitation, 
as was mentioned in passing in eq. (3.12) a ove there is a Yukawa coupling in the theory that b 
violates baryon and lepton number. The underlying reason for this coupling is that in the 
N = 4 theory, which can be thought of as the starting point for the above construction, there 
is a coupling involving the three adjoint fields corresponding to the transverse directions. In 
the case of, say, spinor representations of SO(lO), a trilinear 163 coupling is not allowed by 
gauge invariance and an R-parity symmetry can often be imposed to prevent baryon- and 
lepton-number violating terms. However, in the present example, where all the matter arises 
from adjoint representations no such R parity symmetry is present. This limitation is likely 
to be quite general. 

4. Supersymmetry Breaking 

We turn now to another feature of the SU(5) x U(1) theory discussed above. As we will 
see below, in the world-volume field theory context, a conflict between the non-perturbatively 
generated superpotential and the anomalous U(1) D-term results in the breaking of super- 
symmetry in this theory. Our discussion of supersymmetry breaking will only involve the 
open string sector corresponding to the world volume theory on the D3 branes. Gravity and 
other closed string effects will be neglected. In particular, the dilaton and the orientifold 
blow-up mode [19], h’ h t w 1c ac s as the Fayet-Illiopoulos term for the U(l), are regarded as 
coupling constants, and will be kept fixed in the discussion below. We will establish that 
supersymmetry breaking occurs for any finite value of these couplings.5 But, as is usually 
the case, once they are allowed to vary, we find that there are runaway directions along which 
supersymmetry is restored. Perhaps, these could be stabilized by (yet poorly understood) 
nonperturbative corrections to the K&hler potential (see, e.g. the recent discussion in [15] 
and references therein). The stability of the supersymmetry breaking ground state in the 
context of the full theory is a complicated issue, about which we have nothing to say here. 

Towards the end of this section, we will briefly comment on this runaway behavior and 

5 More accurately, supersymmetry breaking will be shown when the string coupling is small enough to 
argue with confidence that the low-energy dynamics is governed by the SU(5) x U(1) theory. 
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the gravitational back reaction. One final comment before we get started: the discussion in 
this section only involves the branes at the Zs fixed point, any details of compactification 
etc. are irrelevant in this context. For example, the analysis here applies to the world volume 
theory of 11 D3 branes on the noncompact C3/Zs orientifold as well. 

4.1 Supersymmetry breaking in the U(5) theory 

Our strategy to establish supersymmetry breaking is as follows. We first neglect the 
anomalous U(1) and show that in the SU(5) theory the resulting non-perturbative superpo- 
tential gives rise to runaway behavior. Then on incorporating the anomalous U(1) we find 
that its D-term gives rise to an energy that grows along the runaway directions. This leads 
to supersymmetry breaking. 

The SU(5) “th ree g eneration” model is an s-confining theory [17]. The infrared degrees 
of freedom are the mesons and baryons 

C= Ad&Q N (3, 3 7 0) 7 

B= A5 N (6, 1 7 10) 7 

M = A3.(j N (8, 3 75) 7 

(4.1) 

where we have shown their transformation properties under the global sum x sum 

symmetry and the last column in each entry refers to the charges under the anomalous U(1) 
which follow from eq. (3.11). Th e confining superpotential is [17]: 

(4.2) 

where a, b, . . . (cu, p, . ..) denote indices under the SU(3) Q(A) symmetry, respectively, and the 
last term is the tree-level superpotential. The tree-level superpotential breaks the global 
symmetry to the diagonal SU(3)d;,,. It lifts all the C flat directions, but does not lift the 
B and some of the M directions. The superpotential coupling X in (4.2) is proportional to 
the value of the gauge coupling at the string scale (since the tree-level superpotential is the 
projection of the N = 4 superpotential). 

We will show now that the F-term equations of motion following from (4.2) have no 
solutions for finite field expectation values. Consider the equations of motion following from 
the superpotential (4.2) (suppressing numerical constants): 
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Multiplying the first equation (4.3) by csPVMzdQ,ad, summing over b and a, and substituting 
for c,&k?:bM$c from (4.4), we obtain: 

Now under sU(3)&,, the field Mz” decomposes as a 3, given by the partial trace M,““, a 6 
which is antisymmetric in the upper two indices, and a 15 which is symmetric in the upper 
indices (and traceless). Note that the 1.h.s. of (4.6) is antisymmetric in ,LL, y, hence only the 
r.h.s. contributes to the symmetric part of M. This gives rise to the relation: 

from which in turn it follows that AI,“” vanishes as does the symmetric part of M. Thus the 
3 and 15 components of M are zero. The remaining 6 can be written as 

where s is symmetric in the two indices. Substituting into eq. (4.3), and evaluating for Be s 

then leads to the relation: 
s = - ; B-1 . W-9 

Substituting eq. (4.8) in (4.5) and noting that s is invertible, eq. (4.9) then leads to C: = 
6,*Tr C. This then implies that C = 0. Finally, substituting into eq. (4.4), one similarly 
finds that scvp = Scyp Tr s. This leads to the conclusion that s = 0. But now we see from 
eq. (4.9) that B must go to infinity. Thus we have established that there are no solutions to 
the F flatness conditions at finite expectation values. 

The equations (4.3)-(4.5) do have runaway solutions. The discussion above leads to 

the conclusion that along a runaway direction, C and M -+ 0, while B + 00 in an in- 
vertible manner--more precisely B-’ + 0. For example, a runaway vacuum solution with 
sU(3)&,, + sC(3) global symmetry is Ba@ N S@b, P” N Paba3, M”“p N P@b-r, with 
b -+ oo. The physics along the B, det B # 0 directions is easy to understand. Along these 
directions the mesons C and M obtain mass. Upon integrating them out, the superpotential 
of the low-energy theory is Weft = X3h1’/detB, showing explicitly the runaway behavior. 

So far we have studied the non-perturbative superpotential. Now let us include the 
anomalous U(1) by “turning it on” in the effective theory of the mesons C, M, and B. The 
last column in each row of eq. (4.1) gives the U(1) h g c ar es of the three fields. We see that 
C has charge zero, while B and M both have positive charge. We have argued above that 
along a runaway direction B must go to infinity (in an invertible manner) while M and C 

go to zero. Since all components of B have positive charge with respect to the U(l), we 

see that along such a direction the U(1) D-t erm contribution to the energy blows up. Thus, 

the runaway behavior dictated by the non-perturbative superpotential is in conflict with the 
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U(1) D-term potential, leading to the breaking of supersymmetry (note that this is similar 
to the mechanism of ref. [IS]). 

4.2 Remarks on supersymmetry breaking 

We end this discussion of supersymmetry breaking with a few remarks. We first re- 
mind the reader of an important feature of type I orbifolds: the anomaly cancellation of 
the “anomalous” U( 1) s is provided, as in the heterotic case, by a Green-Schwarz mecha- 

nism. However, unlike the heterotic case, the axion that shifts under the U(1) to cancel 

the anomaly is a model-dependent field-the twisted Ramond-Ramond field from the closed 
string sector (this has been pointed out in [19] and recently discussed in [20]). It is in the 
same supermultiplet as the orbifold blow-up mode (the twisted NS-NS field) and can be 

described in terms of a chiral superfield, denoted hereafter by C, with a kinetic term 

s ( d40 C+Ct+V)2 + . . . . (4.10) 

where dots denote higher-order terms. The leading term (4.10) can be written by demanding 
U(1) invariance and a smooth kinetic term for C in the orbifold limit (C) = 0. Here V is the 
anomalous U( 1) vector superfield; in addition to (4.10), the field C also has a Wess-Zumino 
coupling to the gauge field strengths, of the form Jd28CW”W, [19]. In a superunitary 
gauge, the term (4.10) represents a mass term (of order the string scale) for the anomalous 
U(1) vector superfield. By giving an expectation value to the real part of C (blowing up 
the orbifold) one can induce “tree-level” FI terms, with [sr N (C + Ct), as follows from 
(4.10). That (4.10) is correct follows from the computation of ref. [19] of the coupling of the 
real part of C (the twisted NS-NS field) to the D-term of the vector superfield (and from 
a subsequent supersymmetry transformation). This coupling arises from the disk with two 
scalar vertex operators attached to the boundary, and a closed string twisted NS-NS scalar 
vertex operator in the bulk [19], and is of order O(gstring) N g2. 

We note that the conclusion regarding supersymmetry breaking is true for any sign and 
finite value of the U(1) Fayet-Illiopoulous term. Depending on the sign of the FI term, 
the D-term potential can have a zero at finite values of the fields.” However the F-term 
potential vanishes only at infinity. Thus supersymmetry is broken. It is possible though to 
have vanishing D- and F-term potentials for infinite (negative) value of the FI term. 

One would like to find out where the resulting supersymmetry breaking vacuum lies. 
Unfortunately, this is quite difficult-as the following argument shows, one expects the 
vacuum to lie in a strongly coupled region where a semiclassical analysis is not applicable. 
Assuming first that such an analysis is valid, upon balancing the U(1) D-term energy with 

‘Since the U(1) is anomalous one expects that the FI term is renormalized at one loop. However, an 
explicit calculation shows that the FI term is not generated in open string orbifolds, because of cancellations 
between contributions of worldsheets of different topology [21]. 
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the F-term energy one finds that the vacuum energy (with vanishing FI term) scales as 
1s’gX2/3A4 Ah while the typical expectation value of a field goes like o N 

gl is the Uil) g 
X’/6g;“18A. Here 

au g e coupling, X is the tree-level Yukawa coupling, eq. (4.2), and A is the 
strong coupling scale of the SU(5) gauge theory. For a semiclassical analysis to be valid, 
one requires v >> A. If the gauge coupling g1 and X were independent parameters, this could 
have been achieved by taking gr to zero keeping X fixed. However, in our case gl N X, thus 
for small gr the vacuum lies in the strongly coupled region and the semi-classical analysis 
is not applicable. One could make u >> A by taking gr >> 1, but then the string coupling 
would be large, again making a semiclassical analysis invalid. 

While we cannot determine the vacuum explicitly, we know that some of the B, M, and 
C fields must get vacuum expectation values. These expectation values should correspond 
to displacing some of the D3 branes away from the orientifold. We remind the reader that 
the SU( 5) theory under consideration here is the world volume theory for 11 D3 branes 
placed at the orientifold. Classically, the 11 D3 branes are all stuck to the orientifold plane 

and the configuration has no moduli. This corresponds to the fact that in order to meet the 
tadpole conditions and respect the & symmetry no branes can be moved away from the 
orientifold point. Quantum mechanically, due to non-perturbative supersymmetry breaking 
effects we see that some of the branes are repelled by the orientifold plane and come to rest 
away from it so as to minimize the energy. Since there are no moduli the configuration of D3 
branes cannot be described in terms of classical geometry. The displacement of branes which 
are classically stuck at the orientifold is somewhat reminiscent of the splitting of orientifold 
7-planes discussed in ref. [22]. 

As was mentioned in the beginning of this section, the above analysis neglected all in- 
teractions with closed string sector modes. One might at first expect that gravitational 
interactions are small at low-energies and so can be neglected. But once supersymmetry is 
broken and a (boundary) cosmological constant is induced, this is not apriori true. Also, 
interactions with some other closed string modes, which determine the couplings of the brane 
theory are important. There are two modes of this kind. A blow-up mode for the orientifold 
determines the FI term of the U(1) [19]; th is mode (together with its partner) also enters 
in the determination of the coupling constant (theta angle) for the SU(5) theory. Similarly 
the dilaton determines the gauge coupling of the U(1) and together with the blow-up mode 
mentioned above determines the SU(5) gauge coupling. As we have argued here super- 
symmetry breaking occurs for any fixed values of these couplings, but there are runaway 
directions along which it can be restored. For example, as we saw above there is a direction 
along which the FI term can go to infinity with appropriate sign. Similarly, if the dilaton 

goes to infinity, supersymmetry is restored. In fact, as has been argued recently in [15], it 
is necessary to include the dynamics of these closed string sector modes to get a complete 
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description of supersymmetry breaking. Without this there is no goldstino, which signals 
that the description of supersymmetry breaking is incomplete. It is interesting to ask how 
the system of DS-branes will evolve once the dilaton and the blow-up mode are allowed to 
relax and the gravitational back reaction is put in. We leave this question for the future. 

Finally, another natural configuration to consider involves not 11, but 8 branes placed 
at the Zs orientifold plane. This is the minimum number required to meet the tadpole 
conditions (e.g. starting with 32 branes and moving 24 = 6 x 4 away leaves us with 8 branes). 

The corresponding theory has an SU(4) x U(~)A gauge symmetry and three generations of 
fields which transform in the 1 representation of the group. There is in addition an anomalous 
U(1) under which each of the 8 fi e s Id h as the same charge. In this case if the FI term (i.e. 
the orientifold blow-up parameter) vanishes, supersymmetry is unbroken. This is because, 
in contrast to the SU(5) model, the SU(4) theory has a branch of moduli space where 
no dynamical superpotential is generated-this can be inferred from [23] by noting that 
the SU(4) theory with three 6’s is equivalent to the SO(6) theory with three vectors. The 
breaking of supersymmetry is then purely due to the U( 1) D-t erm and vanishes for vanishing 

FI parameter. 

5. Acknowledgments 

We would like to thank Ken Intriligator and Witek Skiba for discussions. E.P. was 
supported by DOE contract no. DOE-FG03-97ER40506. The research of JL and ST is sup- 

ported by the Fermi National Accelerator Laboratory, which is operated by the Universities 
research Association, Inc., under contract no. DE-AC02-76CH03000. 

References 

[l] A. Sen, “An introduction to nonperturbative string theory,” hep-th/9802051. 

[2] J. Polchinski, “TASI lectures on D-branes,” hep-th/9611050. 

[3] E. Witten, Nucl. Phys. B471 (1996) 135. 

[4) H.-P. Nilles, M. Olechowski, and M. Yamaguchi, “Supersymmetry breakdown at a hidden 
wall,” hep-th/9801030; J. El1 is, Z. Lalak, S. Pokorsky, and W. Pokorski, “Five dimen- 
sional aspects of M-theory dynamics and supersymmetry breaking,” hep-ph/9805377, 
and references therein. 

[5] J. Lykken, Phys. Rev. D54 (1996) 3693; I. Antoniadis, N. Arkani-Hamed, S. Dimopou- 
los, and G. Dvali, “New dimensions at a millimeter to a Fermi and superstrings at 
a TeV,” hep-ph/9804398; G. Shiu and S.-H. Henry Tye, “TeV scale superstring and 

16 



extra dimensions,” hep-th/9805157; K. D ienes, E. Dudas, and T. Gherghetta, “Grand 
unification at intermediate mass scales through extra dimensions,” hep-ph/9806292. 

[6] J. Lykken, E. Poppitz, and S. Trivedi, “M(ore) on chiral gauge theories from D-branes”, 
hep-th/9712193; S. El t i zur, A. Giveon, D. Kutasov, and D. Tsabar, “Branes, orien- 
tifolds, and chiral gauge theories,” hep-th/9801020. 

[7] G. Aldazabal, A. Font, L. Ibanez, and G. Violero, “D=,jj N=l, Type IIB orientifolds,” 
hep-th/9804026; L. Ibanez, “A chiral D=4, N=l string vacuum with a finite low-energy 
e$ective field theory”, hep-th/9802103. 

[8] 2. Kakushadze, “A three family SU(4) x SU(2) x SU(2) Type I vacuum,” hep- 
th/9806044; “A three family SU(6) Type I compactification,” hep-th/9804092. 

[9] For a review, see: K. Dienes, Phys. Rep. 287 (1996) 447. 

[lo] See: P. Langacker and N. Polonsky, Phys. Rev. D47 (1993) 4028, Phys. Rev. D52 
(1995) 3081; P. Chankowski, Z. Pluciennik, and S. Pokorski, Nucl. Phys. B439 (1995) 
23; D. Pierce, J. Bagger, K. Matchev, and R.-J. Zhang, Nucl. Whys. B491 (1997) 3, 
and references therein. 

[ll] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti, and Ya.S. Stanev, Phys. Lett. 

B385 (1996) 96. 

[12] E. Witten, “Toroidal compactijcations without vector structure,” hep-th/9712028. 

[13] M. Berkooz, R.G. Leigh, J. Polchinski, J.H. Schwarz, N. Seiberg, and E. Witten, Nucl. 
Phys. B475 (1996) 115. 

[14] Z. Kakushadze, G. Shiu, and S.-H. Henry Tye, “Type-II B orientifolds, F-theory, Type 
I strings on orbifolds, and Type I-heterotic duality,” hep-th/9804092. 

. 
[15] N. Arkani-H amed, M. Dine, and S.P. Martin, “Dynamical supersymmetry breaking in 

models with a Green-Schwarz mechanism,” hep-ph/9803432. 

[16] A. Keurentjes, A. Rosly, and A.V. Smilga, “Isolated vacua in Yang-Mills theories,” 
hep-th/9805183. 

[17] C. Csaki, M. S h c ma It z, and W. Skiba, Phys. Rev. Lett. 78 (1997) 799; Phys. Rev. 
D55 (1997) 7840. 

[18] G. Dvali and A. Pomarol, Phys. Rev. Lett. 77 (1996) 3728; P. Binetruy and E. Dudas, 
Phys. Lett. B389 (1996) 503. 

17 



[19] M.R. Douglas and G. Moore, “D-branes, quivers, and ALE instantons,” hep- 

th/9603167. 

[20] L.E. Ibanez, R. Rabadan, and A.M. Uranga, “Anomalous U(l)s in type I and type IIB, 
D=4, N=l string vacua, ” hep-th/9808139. 

[al] E. Poppitz, “On the one loop Fayet-Iliopoulos term in chiral four dimensional type I 
orbifolds,” hep-th/9810010. 

[22] A. Sen, Nucl. Phys. B475 (1996) 562. 

[23] K. Intriligator and N. Seiberg, Nucl. Phys. B444 (1995) 125. 

18 


